Area

Area is a quantity expressing the two-dimensional size of a defined part of a surface, typically a region bounded by a closed curve. The surface area of a 3-dimensional solid is the total area of the exposed surface, such as the sum of the areas of the exposed sides of a polyhedron. Area is an important invariant in the differential geometry of surfaces.[1]

Contents

Units

Units for measuring area, with exact conversions, include:

Formulae

Area.svg
Common formulae for area:
Shape Formula Variables
Regular triangle (equilateral triangle) \tfrac14\sqrt{3}s^2\,\! s is the length of one side of the triangle.
Triangle \sqrt{s(s-a)(s-b)(s-c)}\,\!  s is half the perimeter, a, b and c are the length of each side.
Triangle \tfrac12 a b \sin(C)\,\! a and b are any two sides, and C is the angle between them.
Triangle \tfrac12bh \,\! b and h are the base and altitude (measured perpendicular to the base), respectively.
Square s^2\,\! s is the length of one side of the square.
Rectangle lw \,\! l and w are the lengths of the rectangle's sides (length and width).
Rhombus \tfrac12ab a and b are the lengths of the two diagonals of the rhombus.
Parallelogram bh\,\! b is the length of the base and h is the perpendicular height.
Trapezoid \tfrac12(a+b)h \,\! a and b are the parallel sides and h the distance (height) between the parallels.
Regular hexagon \tfrac32\sqrt{3}s^2\,\! s is the length of one side of the hexagon.
Regular octagon 2\left(1+\sqrt{2}\right)s^2\,\! s is the length of one side of the octagon.
Regular polygon \frac{ns^2} {4 \cdot \tan(\pi/n)}\,\!    s   is the sidelength and n is the number of sides.
\tfrac12a p \,\! a is the apothem, or the radius of an inscribed circle in the polygon, and p is the perimeter of the polygon.
Circle \pi r^2\ \text{or}\ \frac{\pi d^2}{4} \,\! r is the radius and d the diameter.
Circular sector \tfrac12 r^2 \theta \,\! r and \theta are the radius and angle (in radians), respectively.
Ellipse \pi ab \,\! a and b are the semi-major and semi-minor axes, respectively.
Total surface area of a Cylinder 2\pi r (r + h)\,\! r and h are the radius and height, respectively.
Lateral surface area of a cylinder 2 \pi r h \,\! r and h are the radius and height, respectively.
Total surface area of a Cone \pi r (r + l) \,\! r and l are the radius and slant height, respectively.
Lateral surface area of a cone \pi r l \,\! r and l are the radius and slant height, respectively.
Total surface area of a Sphere 4\pi r^2\ \text{or}\ \pi d^2\,\! r and d are the radius and diameter, respectively.
Total surface area of an ellipsoid   See the article.
Total surface area of a Pyramid B+\frac{P L}{2}\,\! B is the base area, P is the base perimeter and L is the slant height.
Square to circular area conversion \frac{4}{\pi} A\,\! A is the area of the square in square units.
Circular to square area conversion \frac{1}{4} C\pi\,\! C is the area of the circle in circular units.

The above calculations show how to find the area of many common shapes.

The area of irregular polygons can be calculated using the "Surveyor's formula".[2]

Additional formulae

Areas of 2-dimensional figures

Area in calculus

The area between two graphs can be evaluated by calculating the difference between the integrals of the two functions
 \oint_{t_0}^{t_1} x \dot y \, dt  = - \oint_{t_0}^{t_1} y \dot x \, dt  =  {1 \over 2} \oint_{t_0}^{t_1} (x \dot y - y \dot x) \, dt

(see Green's theorem)

or the z-component of
{1 \over 2} \oint_{t_0}^{t_1} \vec u \times \dot{\vec u} \, dt.

Surface area of 3-dimensional figures

General formula

The general formula for the surface area of the graph of a continuously differentiable function z=f(x,y), where (x,y)\in D\subset\mathbb{R}^2 and D is a region in the xy-plane with the smooth boundary:

 A=\iint_D\sqrt{\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f}{\partial y}\right)^2+1}\,dx\,dy.

Even more general formula for the area of the graph of a parametric surface in the vector form \mathbf{r}=\mathbf{r}(u,v), where \mathbf{r} is a continuously differentiable vector function of (u,v)\in D\subset\mathbb{R}^2:

 A=\iint_D \left|\frac{\partial\mathbf{r}}{\partial u}\times\frac{\partial\mathbf{r}}{\partial v}\right|\,du\,dv. [1]

Minimization

Given a wire contour, the surface of least area spanning ("filling") it is a minimal surface. Familiar examples include soap bubbles.

The question of the filling area of the Riemannian circle remains open.

See also

References

Notes

  1. 1.0 1.1 do Carmo, Manfredo. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976. Page 98.
  2. http://www.maa.org/pubs/Calc_articles/ma063.pdf

External links